Parallel Algorithms

1.0 Question One

Show how to compute the expression in parallel using "tree contraction"
$((5+4) \times 2) \times(((4-2)-(2+1) \times 2) \times 2+1)$
Show all intermediate steps how tree contraction is done.
How many operations are required to evaluate the expression?

2.0 Question 2

Given a Hypercube of 2^{k} elements, suppose that alist $A[0], \ldots, A[i]$ is stored in $P E[0], \ldots, P E[i]$ where $i<2^{k}$

Describe a $O(k)$ time al gorithm which reverses the list, That is, the results should bethat $P E[0]$ has $A[i], P E[1]$ has $A[i-1]$ etc.

Question3

3.0 Question3

Demonstrate how to compute the number of decendent of a binary tree. Demonstrate your algorithm with this binary tree.

4.0 Question 4

Draw a de Bruijn's graph for 16 nodes
Can you find a hamaltonian path for this graph?

5.0 Question 5

A) Show how to solve the following recurrence equation using parallel prefix.
$z_{i}=\operatorname{sqrt}\left(z_{i-1}{ }^{2}+a^{2}{ }_{i}\right)$ for $2 \leq i \leq N$ given a_{2}, \ldots, a_{N} as inputs.
Demonstrate your algorithm with $a_{i}=0, Z_{0}=0$ for $N=4$
B) Describe how to compute z_{1}, \ldots, z_{n} in $O(\log N)$ steps using $O\left(\frac{N}{\log N}\right)$ PEs.
C) What is the amount of total work of the parallel machine?
D) Can you improve the algorithm?

6.0 Question 6

A) The process of checking to see if a given sequence of symbols consisting of "(" and ")" represents a balanced parenthesis is fundamental to parsing. Given

Question 7

such a sequence of length n stored in a hypercube based SIM D machine, design an algorithm which determines if the string is balanced in $O(\log n)$ time.
(()())))
B) Describe an algorithm (use GPC) to find the mate for each symbol.

7.0 Question 7

Let $S=\{1, \ldots, n\}$ be the input of an ε-halver.
Prove that the number of strangers is at most $M \bullet \varepsilon$ for a subset $\{1 . M\}$ where $M \leq \frac{n}{2}$.

8.0 Question 8

A) Show how to realize the permutation (31456207) in a Benes network. Demonstrate each step.
B) Can you convert the Benes network into a sorting network by replacing each switch with a comparitor?
C) Can you convert any sorting network into a permutation network by converting each comparitor into a switching element?

