Jeff Hungerford

Start:

s=e*r

g=1

r=p+q

n*o

=)

c=i

e=(c*d)
d=2

? |

|n:h—m | | o

=]

‘]

| b

[]

=k*|

| m

Number Leaf Nodes:

s=e*r

(a*b)

C

(c*d)

e

(7]

=k*|

| m

After Rake:

April 26, 2000

o
b=4
Left Compress:
g=1
10

h-m

Compress

April 26, 2000

k=5+1
Simplify:
|p:(h—m)*2 | |q:1 |
h=5
Number:
Rake:

April 26, 2000

Compress Left:

$=40%(p+q)

Compress Right:

p=(5-(6*2))*2

Simplify

April 26, 2000

Compress:

$=40*(-13+1)

Simplify:

April 26, 2000

2.

The problem of reversing a list stored in a hypercube can be solved by transposing
the matrix holding the list twice.

An algorithm which reverses a list stored in a hypercube is the following:

Allocate three variables per processor; A for holding the data to be
reversed, and B and P as temporary storage.

Repeat the following transposition operation twice:

repeat k times, using m as in index running from 2k-1 to k
do in parallel as 2% tasks, with u holding the node number with u being
indicable at the bit level, with u, representing the least significant bit of u:

{

if Upn# Up_ g

{
B

}

elseifu, = u

{
Au(m— 0 = Bu
}

A

u(m) = My

m-q

April 26, 2000 6

3.

From a list of node traversals resulting from an Eulerian tour,
the descendant of a node of a tree can be determined by the

following procedure:)/GD\‘

For a node X, the number of descendant is the position in the ? /®\
®

tour of the traversal from X to it’s parent, minus 1, minus the
position of the traversal from the parent of X to x, divided by

©
= ¢

For the above tree, the serves of traversals making up the
Eulerian tour are:

(0 - 2),(2 - 6), (6 - 2),(2 — 0)0
E(O_’ 1)1(1 - 3)1 (3_’ 5)1(5_’ B)D
H3 - 1),(1-4),(4-1),(1- 08

To demonstrate, | will compute the number of descendants of node 3, and the
number of descendants for node 1.

The parent of node 3 is node 1.
The location of the traversal from node 1 to node 3 {i(ithe ®)dr is 6.
The location of the traversal from node 3 to node 1 {i(3he Yr is 9.

w = 1 so node 3 has one descendant

The parent of node 1 is node 0.

The location of the traversal from node 0 to node 1 {i(Gthe ©r is 5.
The location of the traversal from node 1 to node 0 {i(ithe @r is 12.

(12-1-5) _21_ 5 - 3 so node 1 has three descendants.

April 26, 2000 7

4.

The following figure is a 16 node (4 bit language) De Brujin’s graph as the follow-
ing properties are true:

Each node is labeled with a symbol in a 4 bit language
Nodes which could act as a prefix for each other are linked.

]

|

il

e

0011 l
-
1011
=

,

April 26, 2000 8

5.

To solve z, = ./ziz_1 + ai2 for 2<i <N with inputs of a,, ..., ay using parallell pre-
fix operations, for the instance {a, =i,Z,=0,N =4}

April 26, 2000 9

6.

With the string initially
stored in a hypercube as
shown: on the left, it can be
determined if the string is
balanced in O(logn) time
through the following:

Each Node Assigns itself a
value, based on the sum
of itself and it’s neighbors
(counting (as 1 and) as -
1

Each Node then assigns
itself a value equal to the
sum of its value, and the
values of its neighbors.

If all of the nodes have a
value of zero, then the
string is balanced.

B)

000

010

001

011

100

110

101

111

April 26, 2000

10

7.

Letting S = {1, ..., n} act as the input to an €-halver, | will prove that the mini-

is M« € through

NIS
rr

U
mal number of strangers for the subset ({ 1...M} M <
U

the following steps:

Observe that the ¢-halver divides S into two sets,
0 V:;=(1,23..,M) 0
%/2:(M+11M+2,M+3,...,n)%

All elements in set V,; which are strangers shall be members of set X;

All elements in set V,, which are strangers shall be members of set X,

As a stranger is an element which should have been placed in one V set, but was
placed in the other, the statement |X,| = |X;| holds true.

Therefore, as |X,| = |X;|, an element can be only in one of these two X sets, and
the total number of elements is M, the total number of strangers is limited to 2M.

April 26, 2000 11

8.
A)

The following Benes network preforms the desired permutation.

04

s

o

1— 2><1 3 .
VAP G Y/
.
g Y =
; &l

B) Yes, as the bernes network is capable of preforming an arbratary permutation,
if the switches are replaced with comparators, it is capable of preforming a sort.

(U]

N
<
X

I

<D
VS
[\®)

~H

C) Yes, If a network is capable of sorting an arbratary input sequence, it is capable
of preforming any permutation on it’s input values. By locking the decisions of
the comparators, and turning them into switches, we can convert a sorting net-
work into a network which preforms a permutation.

April 26, 2000 12

